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 1.0  INTRODUCTION 

 
 
The objective of this study is to measure and model the target strength of a diver in an 

underwater environment. Numerical modeling of the target strength of a diver is 

computed initially using a finite length cylinder model, which is a suitable 

approximation to the human diver because of its elongated shape. The experimental 

approach to measure the target strength of the diver is catalogued in this study.   

 

A relatively new method for predicting the scattering by axisymmetric finite-length 

bodies using a three-dimensional Fourier Mapping Method developed by Reeder and 

Stanton (2004) was improved using Fortran. This implementation of the code in 

Fortran in Linux provides high performance as compared to the current available code 

in Matlab.   

1.1 Project Motivation 

 
Physical security near marine infrastructure such as bridges, power plants, port and 

harbor facilities etc. is of increased importance. A threat to these facilities can come 

from scuba divers and acoustic methods for detection of these divers is gaining 

importance in this era. In 2004, the University of Rhode Island Transportation Center 

(URITC), USA funded this project for identifying divers and thus to potentially 

protect these infrastructures from serious threats. 

 



 2

Acoustical methods have been extensively used to locate and identify underwater 

objects. These applications include locating underwater vehicles, finding shipwrecks, 

imaging sediments and imaging bubble fields. Ocean is fairly transparent to sound and 

opaque to all other sources of radiation. Acoustics is the most effective tool for 

monitoring this environment because of the sound's ability to propagate long distance 

in water. The main unknown in assessing the feasibility of using sonar to detect divers 

is their target strength.  

 

Analyzing the target strength of a diver is complicated by the size, shape, frequency, 

angle of orientation and material properties. Some objects in the sea resemble 

spheroids. Exact solutions for the target strength of spheroids exist in the literature [6] 

[2]. However, considering the shape of a human diver, the target strength is expected 

to be more complicated than a simple spherical model. Another possible simple model 

is a finite cylinder for which analytical formulas are provided by Urick [18], Stanton 

[15], and Gaunaurd [7]. 

 

In this study, while modeling the human diver in the form of a finite cylinder, end 

effects are assumed to be negligible and solution is most accurate in the case where the 

incident plane wave is normal to the axis of the cylinder. The length of the cylinder is 

much greater than the diameter. The classification of finite or infinite cylinder is done 

by virtue of its length. A cylinder is classified as infinite, if its length is greater than 

the radius of the first Fresnel zone of the receiver λr  (where r is the range and λ is 

acoustical wavelength), otherwise it is said to be finite [3]. 
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The diver is more complicated than a finite cylinder due to the equipment like tanks, 

suit, etc., which also contributes strongly to the total scattering. It has been observed 

that, in the case of marine mammals, the lungs are the most reflective part of the body. 

For example, the target strength of a dolphin was found by Au [1] to be –11 dB re 1 m 

at 23 kHz with the lungs thought to be the most important scatterer. Similarly, for a 

human diver, lungs and the scuba tank(s) may be the largest contributors to target 

strength depending on the angle of orientation.  

 

The FarSounder FS-3 forward-looking phased array sonar is used in this study to 

measure the backscattering of the diver underwater [5]. The Farsounder FS-3 is a 

monostatic sonar which has the unique capabilities suited for this study such as real 

time 3-D imaging with a single ping, wide field of view, fast update rate and a center 

frequency of 60 kHz. Two tests were carried out using the FarSounder sonar with the 

diver at different orientations, depth and range at Fair Haven Bay, Massachusetts and 

Narragansett Bay, Rhode Island at a water/bottom depth of 30 m and 20 m 

respectively. The obtained raw data was processed using Matlab in the ocean 

engineering lab. A beam pattern of the image for various pings using Matlab clearly 

showed the diver with bubbles. The procedure for processing the raw data and plotting 

the images are explained in the section IV. 

 

1.2 Numerical Implementation of FMM Using Fortran 

A relatively new technique for modeling acoustic scattering by axisymmetric finite-

length bodies was applied based on a conformal three-dimensional Fourier Matching 
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Method (FMM) developed by Reeder and Stanton (2004). Fourier Matching Method 

(FMM) involves a conformal mapping of variables to a new coordinate system in 

which the constant radial coordinate exactly matches the scatterer surface. The FMM 

method makes use of the Newton–Raphson algorithm [14] to execute the mapping. 

Requiring the Fourier coefficients in the new angular variable of the total field to be 

zero satisfies the boundary conditions, and the resultant scattered field is expressed in 

terms of circular eigenfunctions. 

 

The FMM method was originally devised for an infinite cylinder by Diperna [4].  

Reeder and Stanton formulated the FMM to suit the scattering of finite objects. It 

involved the transformation from a 2D coordinate system to a 3D coordinate system. 

The FMM code for calculating the backscattering of a prolate spheroid was developed 

in Matlab by Reeder. It was hypothesized by Reeder that the solution is stable and 

more accurate if the computation is done in a higher precision than Matlab is capable. 

In this study, the numerical implementation of the FMM method was refined using 

Fortran 77 with I-Fort Fortran compiler in Linux Cluster system. The results obtained 

from this study were found to be more stable and accurate as compared to the code 

existing in Matlab. Fortran provides faster computational results and the translated 

code has the potential for modeling more complex shapes with higher aspect ratios at 

higher frequencies. The FMM code implemented in Fortran is used to predict the 

scattering from shapes such as prolate spheroid and scuba tanks and compare it with 

the present study. 

 



 5

The target strength calculated using the numerical modeling of a finite cylinder of 

length 1m and radius 0.125 m using the formulas from Urick, Stanton and Gaunaurd 

was equal to the value of approximately -20 dB at an angle of incidence of 45 degree 

with respect to the axis of the cylinder. The target strength calculated from the beam 

forming analysis was approximately –21 dB, which shows that the numerical study 

and the experimental results agree with each other at the desired angle of incidence. 

The beamforming results plotted using Matlab clearly showed the diver and the 

bubbles. The code translated from Matlab to Fortran in quad precision was much 

faster. The results obtained from the Fortran compiler in the Linux environment was 

faster as compared to those obtained in Matlab in the Windows operating system.  

Results were plotted and are discussed in the following sections.  

 

The study is organized as follows. In section 2.0, the numerical modeling of the target 

strength of finite cylinder is discussed. The solutions of target strength of finite 

cylinders by Urick, Stanton and Gaunaurd are compared and the figure is plotted for 

the three different procedures for various angles of incidence. In section 3.0, the 

experimental procedure for measuring the target strength from diver is described. The 

sea trial is illustrated and the methods of processing the raw data are discussed in the 

section. In section 4.0 the code translation from Matlab to Fortran is explained giving 

a brief background of the current technique of FMM followed by the results in section 

5.0. 
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2.0  TARGET STRENGTH OF FINITE CYLINDER 

 

2.1 Sonar Equation 

 

The sonar equation deals with working relationship that tie together the effects of the 

medium, the target, and the equipment. [18]. The sonar equations deal with all aspects 

of sound generation, propagation and attenuation underwater and for this reason 

provide an excellent framework for an engineering study of underwater acoustics. The 

active sonar equation is given by 

 

SNR = SL – 2 TL + AG + TS – NL                 (2.1) 

 

where SNR is the signal to noise ratio and is related to the probability of detecting a 

target. SL is the source level and has units of dB re to 1μ Pa at 1m. NL is the 

background noise at the receiver and has units of dB re to 1μ Pa. AG (dB) is the array 

gain and is the measure of the ability of the sonar to pick up and discriminate the 

incoming sounds in the underwater environment.   

 

The intensity of an acoustic signal reduces with range. Due to the combined effects of 

spreading and attenuation, there is a reduction in the intensity of the acoustic signal as 

range increases from the source shown in Figure 1. This observed reduction, also 

called transmission loss (TL) is calculated as a logarithmic function of the range from 
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the acoustic source. The target is detected based on the detection threshold, which is 

defined as the ratio, in decibel units, of the signal power in the receiver frequency 

bandwidth to the noise power in a 1 Hz frequency band, measured at the receiver input 

terminals, required for the detection at some preassigned level of correctness of the 

detecting decision [18].  The detection threshold describes the level at which the sonar 

or the observer decides a 'yes' or a 'no' as to whether a signal is present.  

 

 

Figure 1. Showing the effect of the Signal to Noise (SNR) ratio to the range for 

various target strength. The SNR strongly depends on the range for a particular 

value of target strength. 
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The parameter of interest for this study is the target strength. The target strength (TS) 

is a measure of the acoustic reflectivity of the target. SNR will increase with increase 

in target strength as can be seen from Eq. (2.1).  

 

2.2 Target strength 

 
Target strength is defined as 10 times the logarithm to the base 10 of the ratio of the 

acoustic intensity of the scattered wave at a unit distance (1m) from the acoustic center 

of the target to the intensity of the incident plane wave [18].  

 

where I scattered @ 1 meter and Iincident  are the scattered intensity measured at 1m 

from the scatterer and the incident intensity, respectively.  

 

For perfect reflecting objects, the most important parameters that affect the target 

strength are size, shape, aspect angle and frequency for a given target. The detection 

range for a target is strong function of target strength and no data are available in the 

literature on the target strength of divers. Measurements of the target strength of 

marine mammals have been reported, e.g. for humpback whale, TS = 8 dB [1] and for 

bottlenose dolphin, TS = -10 dB [12]. We initially use a finite air-filled cylinder as an 

approximation to a human diver in the water. Figure 2 shows a model used for the 

calculation of target strength of finite cylinder of length L and radius a and an angle of 

incidence of θ degrees to the incident ray. 

incident

meterscattered

I

I
TS 1@log10=
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Figure 2. Block diagram showing the incident ray on the cylinder of length L and 

radius a with an incident angle θ with the normal. 

 

The following assumptions are made in deriving the suitable formula for the target 

strength of the finite cylinder:  

 

1. The length of the cylinder is much greater than the diameter so that the end  

      effects are assumed to be negligible.  

2. The solution is most accurate for the cases where the incident plane wave is  

      normal to the axis of the cylinder.  

3. The target can be treated as perfect reflecting object.  

 

The consequence of assumption (2) is that only normal or near normal-incidence 

waves (relative to the axis of the cylinder) may be applicable. That is, the solution is 

not valid for end-on geometries. 
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2.3 Derivation of Target Strength of Finite Cylinder 

 

The target strength of a finite cylinder was derived from the vector form of Huygens 

principle. The Kirchhoff-Huygens principle [17] states that if the value of the field 

quantity is known at every point on any closed surface surrounding the source free 

region, each elementary unit of surface can be considered as a radiating source, and 

the total field at any interior point is given by integrating the contributions of all the 

individual elements. This principle is generally given in a form appropriate for scalar 

fields, such as sound.  A modification to the above principle will provide a suitable 

method for calculating the scattering cross sections.  

 

The formula of target strength was derived by Kerr [9] for scattering of radio waves 

from perfectly conducting finite cylinders based on Huygens's vector principle. It 

states that, if a plane wave falls on an object of arbitrary surface S, as shown in Figure 

3, the object scatters the incident wave and the currents and charges within the object 

is considered as the source of the scattered wave.  

 

The present analysis for finding the scattering from finite cylinder focus in two ways,  

1. Only back scattering along the direction of the incident wave will be 

calculated. 

2. The scattering object will be considered to have infinite conductivity. 
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Figure 3. Plane wave incident upon a surface S of arbitrary shape. The direction 

of propagation is no, and the normal to the surface at any point is n.  

 

The second restriction requires all fields inside the object and the tangential 

component of electric field E and the normal component of magnetic field H on the 

surface to be zero. Then the scattered field is given by  

dS
r

eHnH
s

ikr

t
s   )(

4
1
∫ ⎥

⎦

⎤
⎢
⎣

⎡
∇××−=

−

π
                                                            (2.2) 

 

where the surface of integration is the surface of the object and a closed surface at  

infinity (the integral over the surface is zero), n is the unit normal to the surface, R 

may replace the r in the denominator, the distance to the center of the target. Then,  

[ ] dSeHnn
R

ikH
s

ikr
to

s   )(
4 ∫ −××−=
π

               (2.3) 

 

The ratio of the scattered to the incident Poynting vector is proportional to the square 

of the ratio of scattered to incident fields; so the scattering cross section σ becomes  
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o

s

i

s

H
HR

S
SR 22 44 ππσ ==                  (2.4) 

 
 
where R is the distance from any element of area ds to the point of observation (source 

of the wave). Ss and Si are the scattered field and incident field, respectively.  

  
2.3.1 Scattering from Planes and Curved Surfaces 
 
 

Consider a plane linearly polarized wave incident upon a plane surface S, as shown in 

Figure 4, making an angle θ with the z-axis, where E is the electric field, H the 

magnetic field associated with it, Ht the total magnetic field entirely tangential to the 

surface, Hs the total magnetic field on the surface, a the unit vector, R the distance to 

the center of the target and φ the angle made in the x-direction. The plane of incidence 

is x-z plane. 

 

Figure 4. Plane linearly polarized electromagnetic wave incident upon a plane surface S 
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The incident wave magnetic field is given by  

)sin( θxRik
o

i eaHH −−=                                          (2.5)  

 

where iH  is the incident magnetic field , oH is the magnitude of the magnetic field, 

if α  is the azimuth angle of a in this plane (x z) then the unit vector a is given by  

θααθα sincossincoscos zyx iiia ++=                                                         (2.6) 

 

Now assuming that the surface S is very large for determining the value of tH and the 

value of the tH is constant when the surface is finite and when the surface is infinite .  

Ht will be proportional to the incident magnetic field, the magnitude of which is H0, 

given by the equation  

),,( zyxHiH ott ζ=                                                                                                   (2.7) 

 

where ),,( zyxζ is a complex function describing the variation of field over the 

surface and it is a vector tangent to the surface and giving the direction of the given 

field. In the front side the tH  is assumed to be twice the tangential component of the 

incident wave.   

)sin(2 θxRik
ott eHiH −−=                                                                                                (2.8)  

 

where  

αθα sincoscos yxt iii +=                                         (2.9) 
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and therefore  

θcos)( ainn to =××                                                                                                (2.10) 

 

Substituting the above results above Eq. (2.3) the scattered field Hs
  becomes  

dsee
R

ikH
aH

s

kxikRis ∫ −−−= θ

π
θ sin220

2
cos                                     (2.11)

     

The above equation shows that the maximum back scattering occurs for normal 

incidence where (θ  = 0). The radar cross-section area σ  is found from the Equations 

(2.3), (2.4) and (2.8) and is given by, 

2

sin22
2

2

cos4 dseA

s

kxi∫ −= θθ
λ
πσ                                                                            (2.12) 

 

Substituting for (θ  = 0), we get the σ max as  

2

2

max
4
λ
πσ A

=                                                                                                            (2.13) 

 

where A is the area of the surface. For a rectangular surface with the dimensions of a 

and b, the cross section area is given by  

 

2
2

2

2

sin
)sinsin(cos4
⎥⎦
⎤

⎢⎣
⎡=

θ
θθ

λ
πσ

ka
kaA

                                                                              (2.14) 
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2.3.2 Extending the General Formula to Cylinders 

 

Scattering of the cylinder is calculated from the above formulation with the necessary 

assumptions. Two cases were considered that of longitude polarization where the 

cylinder is oriented parallel to the electric field and the second one is the transverse 

polarization where the cylinder is perpendicular to the electric field. The second case 

is of importance to this study in calculating the scattering from finite cylinders.  

 

Scattering from cylinders can be calculated by extending the formulas derived. Two 

cases will be considered  

 

1. Longitudinal polarization, in which the cylinder is oriented with its axis parallel 

to electric field of incident wave. 

2. Transverse polarization, in which the cylinder is perpendicular to the incident 

electric field and to the direction of propagation. 

 

Assumption is made that the fields on a finite length of the cylinder do not differ from 

those on an infinitely conducting cylinder. Based on the above assumption, the cross-

section is calculated from Eq (2.14). For the case of longitudinal polarization, the 

cylinder is oriented along the z axis of the coordinate system as shown in Figure 5.  
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Figure 5: The above figure shows the geometry for calculation of scattering from 

a cylinder. The figure shows the incident ray on the cylinder of length L and 

radius a with an incident angle φ  with the normal.  

 

The incident wave traveling along the x-axis is obtained from the expansion of a plane 

wave in cylindrical co-ordinates. The total field as the sum of the incident and the 

scattered fields can be written as  

 

⎭
⎬
⎫

⎩
⎨
⎧ +++−−−= ∑

∞

=

)](')('[cos)]()([sin)()2( )2()2(

0

krHakrJnikrHakrJn
kr
niiiHH nnnnnnr

n

n
ono φφδ φ

 

                                                                                                                                (2.15) 

where  

onδ  is the Kronecker delta function equal to unity if n = 0 and zero otherwise. 

nJ is the Bessel function. 
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)2(
nH  is the hankel function  where  )2(

nH  = nJ + niN  

nN  is the Neumann function 

non εδ =− )2( , where nε  is the Neumann number for n = 1,2,3,… 

0

0

η
E

H o =   is the incident magnetic field and E0
  is the incident electric field. 

 

At the surface of the cylinder where r = a, the radial component of the magnetic field 

is zero which requires that  

)(
)(

)2( kaH
kaJa

n

n
n =

                                                                           (2.16) 

where ρ  is the density and k is non-dimensional frequency. 

 

The longitudinal surface current K is given by, 

{ }
⎭
⎬
⎫

⎩
⎨
⎧ −

−−−=× ∑
∞

= )(
)(')()]()('

cos)()2(),,( )2(

)2()2(

0 kaH
kaHkaJkaHkaJ

niiHizyxHii
n

nnnnn

n
onozotr φδζ  

                                                                                                                                 (2.17) 

The numerator of the entire expression is given by 
ka
i

π
2

. The vector product of no = ix 

changes the direction to that of the y- axis and the Eq (2.17) becomes  

 

2

)2(
0

2 cos
)(

)()2(
2 dsne

kaH

i

ka s

ikr

n

n

n
on

φ
δ

πλ
πσ ∫

∑
−

∞

=

−−
=                                                       (2.18) 
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If R is the distance from the point of observation to the center of the cylinder,  r≈R +a 

cosφ .  

 

The surface element dS = a dφ dz and the integration is performed over the angular 

range from 0 to 2π and over the length l. Integration of Eq. (2.18) requires integral 

representation of the Bessel function. After integration, Eq (2.18) becomes, 

 

2

)2(
0

2

)(

)()()2(
4

kaH

kaJi
l

n

n
n

n
on

l

−−
=

∑
∞

=

δ

π
σ                                                                         (2.19) 

 

Eq. (2.19) represents the scattering cross section for the longitudinal case. The 

scattering cross section for the transverse case is given by  

 

)(
)(

'tan

where

)(

sin)()2(
4

2

)2(
0

2

kaN
kaJ

n

kaH

nei
l

n

n

n
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n
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t
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=

∑
∞

=

δ

δδ

π
σ

δ

                                                                    (2.20) 

 

Analysis of transverse-polarization case proceeds in similar fashion and leads to  
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                                                                 (2.21) 

 

The dependence of the scattering cross section σ  on the radius is important. The 

above equation has two different solution for the case where ka is very much greater 

than 1 and the ka is very small. We are interested in the case where ka  >>1.  

λ
πσσ

2
2

 

2 alkalkalt =⎯⎯ →⎯≈ ∞→                                                                                                

 

The above equation was derived for the direction of propagation perpendicular to the 

axis of the cylinder. If the incident field lies in the x-z plane and with the direction of 

propagation no forming an angle θ  with the x-axis, the cross section becomes  

  

                                                                                         (2.22) 

 

where the 1σ  is obtained from Eq. (2.19) after replacing ka  by ka cosθ . For very 

large ka cosθ , 1σ  is obtained from Eq. (2.21) after replacing ka  by ka cosθ . 
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The above formula gives the expression for the backscattering cross section of the 

finite cylinder. The scattering cross section can be defined as the ratio, in decibel units, 

of the intensity of the sound scattered by a unit area, referred to a distance of 1 yard, to 

the incident plane wave.  

 
The target strength is defined in terms of the backscattering cross section from Urick  
 
[20] as  
 

π
σ
4

log10=TS                                                                                                         (2.24) 

 
 
Simplifying the above terms we get 
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2.4 Comparison Of Target Strength of Finite Cylinder of Kerr/Urick with 

Stanton and Gaunaurd 

 

Using the assumptions described in section 2.2, Stanton [15] formulated the target 

strength of the finite cylinder using the modal solutions. By neglecting the end effects, 

the volume unit flow per unit length of the scattered field of the finite cylinder is 

approximated by that of the infinite cylinder. The solution for the scattering of the 

finite cylinder is obtained by integrating this volume flow along the length of the 

cylinder. His solution for the scattering cross section is,   
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where θcoskK =                                                              
 
 
Simplifying Eq. (2.26) the target strength can be written as  
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Gaunaurd [7] used the physical optics method (Kirchhoff`s method) to derive an 

equation for the backscattering cross section σ of a cylinder. Gaunaurd derived the 

target strength of finite cylinder partially insonified by a finite beam of sound because, 

the partial coverage of the target by the beam is the situation most likely to occur in 

many cases of practical importance. The backscattering cross section σ is defined as  
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where b is the radius of the sound beam in m, k is the wave number, and θ is the 

incidence angle. When the assumption is made that beam of sound fully ensonifies the 

finite cylinder, then the beam radius is the half the length of the cylinder or 

2
Lb =                                                                                                                       (2.29) 

 
 
Substituting Eq. (2.28) and Eq. (2.29) in Eq. (2.24) we get  
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The results provided above indicate the presence of a cos 2 θ term Eq. (2.25) in the 

Kerr / Urick whereas cos θ in the other two derivations (Eq. (2.27) and Eq. (2.30)). All 



 22

three derivations are valid for small incidence angle. This difference between 

Urick/Kerr on one hand and Gaunaurd and Stanton on the other hand is not significant. 

The target strength formulae was plotted for the finite cylinder of length 1 m and 

radius 0.25 m. Figure 6 shows the comparison between the Equations (2.25), (2.27), 

(2.30) and the agreement for small angles of incidence at a frequency of 60 kHz.  

 

 

Figure 6. The target strength of the cylinder of single realization versus the angle 

of incidence for a finite cylinder using Equations (2.25), (2.27) & (2.30). The 

radius of the cylinder was taken as 0.25 m and the length of the cylinder is 1m. 

 

The finite length cylinder is more suitable for modeling the backscattering of a human 

diver than a sphere because of its elongated shape. Since the maximum scattering from 
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the human body will be predominantly by the torso, especially the lungs, the length of 

the numerical cylinder model was taken as 1m. The radius of the cylinder was taken as 

0.125 m as a suitable approximation to the size of an average human waist. The end 

effects are assumed to be negligible and the resulting solution is most accurate in the 

case where the incident plane wave is normal to the axis of the cylinder. The 

numerical modeling provided us with basic framework for identifying the diver by 

means of their target strength. The experiment analysis for measuring the target 

strength of the diver is explained in the following section 3 below. 
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3.0 EXPERIMENTAL MEASUREMENTS OF DIVER TARGET 
STRENGTH 
 
 
 
The field experiment to measure the target strength of the diver was conducted on 

June 1, 2005 in Buzzards Bay, Massachusetts using a forward-looking sonar.  The 

recorded data was processed using the planar array FFT beamforming technique. The 

equipments used in the field experiment, the procedure for recording and processing 

the data are discussed in detail in this section.  

 

3.1 FARSOUNDER – FS3 SONAR  
 
 
A forward-looking sonar manufactured by Farsounder Inc. was used for this study. 
 
The Farsounder FS-3 system was designed as a surface ship navigation device capable 

of detecting targets in the water such as, whales, buoys etc. It is a monostatic sonar 

with a center frequency of 60 kHz and has the capability for real time 3-D imaging 

with a single ping, wide field of view (90 deg x 90 deg) and 2-second update rate with 

a beamwidth of about 10 degrees.  As shown in Figure 7, the Farsounder sonar system 

that includes a transducer, power module, and graphical user interface. The wet-end of 

the transducer was pole-mounted to the boat. The power module connects to the wet-

end and is rack or table mountable for convenient installation. This system records the 

raw data in a Matlab™ compatible format using the Microsoft Windows™ DLL 

programming interfaces.  



 25

 

Figure 7. The Farsounder sonar system used for the experiment. The sonar was 

mounted on the bow of a small research vessel and was attached to the laptop 

through the cables.  

 

Figure 8:  Left panel. The installation of the Farsounder sonar by the Farsounder 

Inc. engineering crew. Right panel: Sonar in operation. 
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3.2 ROV  
 
 
In addition to the Farsounder sonar, the Seabotix ROV (Remotely Operated Vehicle) 

provided by the Department of Ocean Engineering was also used for this experiment.   

The functions of the ROV such as the thruster control, variable, camera, light, are 

simple to operate. The sonar was mounted on the 43' long R V Quest which served as 

the platform for our field operation. Figure 8 below shows the installation of the sonar 

in the research vessel R V Quest.  

 
3.3 Diver and Diving Equipment 
 
 
 
The captain of the ship, Mr. Eric Takajian, acted as the primary diver target in the 

experimental trials (Figure 9). The equipment included the three tanks, the diving gear 

and the diver propulsion vehicle. A detailed list of the equipment is provided in Table 

3.1 below. 

 
Target Physical dimension 

Male diver – Eric Takajian  
 
Dual Pressure Steel tanks 
 
Single Luxfur aluminum tank  
 
Apollo Diver Propulsion Vehicle (AV1)  

(150 pounds, 1.7 m) 
 
(120 cu. ft. @ 3500 psi.) 
 
(40 cu. ft. @ 1900 psi.) 
 
(weight in water 2.7 kg, 12 V) 
 

 
 

TABLE 3.1 Equipment used by the diver during the experimental trial. 
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Figure 9. Mr. Eric Takajian (diver) with this diving gear, 2 aluminum tanks and 

one tank filled with oxygen used for decompression for longer dive. 

 
 
3.4 Data Acquisition using Farsounder Sonar 
 
 
The experiment was conducted in Buzzards Bay, Massachusetts at a water depth of 33 

m. Figure 10 shows the experimental configuration. Data was collected on board the 

research vessel R V Quest. In order to prevent the reverberation from the sea surface, 

the Farsounder sonar was placed 1.82 m below the sea surface while the scattering 

measurements are underway.  
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Figure 10. Showing a typical sea trial scenario. The sonar is mounted on the hull 

of the ship (R/V Quest) and was used to ping at the target (diver). The position 

(range, depth) and orientation of the diver were varied during the experiment. 

 

The diver was required to dive down to a depth of 18 m at two different horizontal 

ranges of 24 and 21 m. The diver maintained a stationary position for 3 minutes for 

every 1.5 m depth change on the way up. A wreck wheel, suspended from the RV 

Quest and tied to the diver, helped him to maintain a fixed position during the 3-

minute time interval. The diver traversed up and down the water column during each 

trial with the help of a propulsion vehicle. Due to the presence of currents at the 

location (~ 1.5 knots), the diver was at an angle of incidence of approximately 45 

degrees to the sonar ping. 

A spherical float of diameter 0.28 m was used as a reference target for calibration. The 

sphere was suspended at 15 m below the sea surface at a range of 24 m. The target 
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strength measurements of the sphere were recorded from the RV Quest before using 

the diver as the main target at 60 kHz.  The readings were recorded by the data 

logging system (computer system) connected to the Farsounder. The real time image 

of the diver provided by the Farsounder display (Figure 11) provides all three spatially 

significant components: range, bearing, and depth, which helped to monitor the 

location of the diver underwater.  

 

 

 

Figure 11. Real time acoustic images of the diver produced by the Farsounder 

sonar system. The above figure shows a 3-D visualization of the image of the 

diver with the bubble. The diver and the bubbles coming out were clearly 

detected using the visuals provided by the Farsounder. 
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The diver was also observed using the Seabotix ROV at different depths, orientation 

and range during the experiment. In addition to the diver, the bubbles from his 

exhalation could also be clearly seen in the images taken in the ROV (Figure 12). 

 

 

Figure 12. An image of the diver taken by the video camera of the ROV. The 

diver can be seen in the image with the tanks and diver propulsion vehicle. The 

bubbles and the diver’s equipment can be seen clearly in the picture. 

 
The data collection effort lasted nearly for 4 hours. The data collected during the 

experiment was beamformed to determine the target strength of the diver, and 

subsequently to compare with the predictions of the numerical models described in 

Section II. The planar array beamforming technique applied to the raw data is 

explained in the remainder of this section.  
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3.5 Planar Array Beamforming 

 

In order to locate the target in range, depth and bearing, it is necessary to process the 

output electrical signals from the individual elements of the array. If the acoustic field 

incident upon a planar array is general plane wave field, we can estimate both the 

direction and frequency content of incident field by processing this output electrical 

signals in the array. FFT planar array beamforming technique is one of the ways to 

estimate both the direction and frequency content of the sound field. The FFT 

beamforming concepts to process the incident acoustic signal on the array are 

discussed in the following sections. Throughout this discussion it is assumed that the 

source (target) of the wave is in the far field of the array and the incident wave can be 

treated as a plane wave. 

 

3.6 Theory  

 

The output electrical signal from a receive planar array is defined in terms of the 

incident acoustic signal by,  

∫
∞

∞−

−= ββγβγ dDYY RM ),('),(),( ηηη                                                                      (3.1) 

 

where η represents the output or received frequencies in Hz, ( ) ,, zyx γγγ=γ is the 

three dimensional spatial vector whose components are spatial frequencies in the X, Y 

and Z directions respectively, ( )zyx βββ ,,=β  is the three dimensional spatial vector 
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under the integral in the X, Y and Z directions respectively and zyx ddd βββ=βd . 

),(' βηRD is the far-field directivity function, or beam pattern of the receive aperture 

which is given by,  

),,('),,,('),(' yxRzyxRR DDD ββηβββηη ==β ,                                                        (3.2) 

 

The far-field directivity function is only a function of two spatial frequencies yx ββ ,  

and not zβ , since the array lies only in the XY plane (where z = 0). Hence we can 

simplify Eq. 3.2 as follows,  
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where [ ] )(exp)()( ηθηη mnmnmn jac += is the frequency-dependent, complex weight 

associated with element 'mn', and )(ηmna and )(ηθmn  are real, frequency dependent 

amplitude and phase weights respectively. M' and N' are defined as,  
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where M and N are the total number of elements in the X and Y directions 

respectively. Note that M and N are assumed odd in this case. The input acoustic 

signal ),( βηMY  is given by, 

{ }),(),( rβ r tyFFY MtM =η                                                                                            (3.4) 
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where { } ansformFourier tr  temporalrepresents •tF and { } { } •=• zyx FFFFr represents 

the three dimensional Fourier transform of the radiated acoustic field ),( rtyM incident 

on the array with respect to x, y and z. If a sound source (target) is in a homogeneous 

fluid medium in the far-field region of the array, then the radiated acoustic field 

),( rtyM incident upon the array (Figure 13) is given by  
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where g(t) is an arbitrary function of time. zzyyxx ˆˆˆ ++=r is the position vector to a 

field point (x, y, z), ooo nr ˆ=r is the position vector to the acoustic source (target) and 

or  is the range to the acoustic source (target).  

 

Figure 13. A plane wave field ⎟
⎠

⎞
⎜
⎝

⎛ −•
+

c
n

tg oo )(ˆ rr
with arbitrary time dependence 

propagating in the - on̂ direction.  
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Aτ , the actual or true time delay from the acoustic source to the center of the array is 

defined as,   

,
ˆ
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r
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n ooo

A =
•

=
rτ   

 ˆˆˆˆ zwyvxun oooo ++=  is the unit vector pointing to the source, ooou ψθ cossin= , 

ooov ψθ sinsin= and oow θcos= are the direction cosines in the X, Y and Z direction 

respectively, and c is the sound speed in the medium. 

 

As mentioned earlier, the frequency content of the radiated sound field and the 

direction to the target can be found if the output frequency and angular spectrum of the 

output electrical signal is estimated.  To apply FFT beamforming technique to solve 

this problem, assume a receive aperture to be planar array of M × N identical, equally 

spaced, complex-weighted point sources lying in the XY plane (Figure 13).  

The output electrical signal ),( rty from the element mn in the array is represented by 

),,(),( yx ndmdtyty =r , since the elements are located at 0,, x === zndymd yx . If 

the output electrical signal is sampled at time slTt = , (Ts is the sampling time period 

of the signal and l  is the total number of time samples) the sampled signal can be 

written as, 
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Eq. 3.6 represents a three-dimensional generalization of one-dimensional time-domain 

impulse sampling. The frequency and the angular spectrum of ),,( yxtys can be 

written as, 

{ }),,(y),,( s yxtFFFY yxtyxs =γγη                             (3.7) 

 

Substituting Eq. (3.6) into Eq. (3.7) we get 
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)(ηmnc  is used for beamforming (use a amplitude shading function and phase steer) 

and is defined as the frequency dependent complex weight associated with element 

'mn'. Eq. (3.8) is evaluated by transforming it into a three-dimensional DFT by 

discretizing yx γγη ,,  as 

ηη Δ= q                                                                                                                     (3.9) 

xx r γγ Δ=  and                                                                                                          (3.10) 

yy s γγ Δ= .                                                                                                               (3.11) 

where   ,1
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=Δη L is the total number of time samples.                                     (3.12)          
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M Z and NZ  is the integer number of padded zeroes.  
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Substituting Eq. (3.9 – 3.14) in Eq. (3.8) the beamformer output can be written as, 
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Eq. (3.15) provides the basic algorithm for planar array beamforming. Using this FFT 

planar array beamforming technique the target was localized the algorithm for 

localizing the target was experimented. 

 
3.7 Beamforming of the Raw Data 
 
 
Farsounder sonar consists of 100 identical elements (arranged in a 10 × 10 grid), 

complex-weighted planar array lying in the XY plane (Figure 13) with Z-axis pointing 

towards the target. The raw data obtained from the Farsounder sonar is modulated 

with a carrier frequency of 60 kHz and sampled at 240 kHz. The sonar pings every 2 

seconds and for each ping, the backscattering from the target is recorded. The 
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elements of the Farsounder array are electrically interconnected (Figure 11) to produce 

a directional radiation pattern. The interconnection between elements, known as the 

feed network, provides a fixed phase to each element forming a phased array.  It is 

necessary to obtain both the phase and the magnitude information from the raw data to 

be able to beamform the data in the frequency domain. The array is used in the 

monostatic mode, and records the sound field incident on it, from potential target of 

interest. The target's direction and the frequency content of the radiated sound fields 

are estimated from the output electrical signals from the individual elements of the 

array.  

                                                                                                                                                       

 

Figure 14.  Farsounder array information facing towards the observer, starting 

from the bottom right-hand corner of 0 to the top left-hand corner of 99.  
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The 16-bit digitizer in the Farsounder sonar converts the incident acoustic signal from 

the target to its corresponding count. The absolute maximum count value is 35768, 

which is equal to a maximum voltage of 10 mV. Figure 15 shows the demodulated 

raw data from the Farsounder sonar in terms of its count on the y-axis and time series 

on the x-axis. The total count value is equal to 65536 (16-bit) and the absolute count 

value is 35678.  

 

 

Figure 15. Raw data from the Farsounder sonar plotted against count in y-axis 

and time series in the x-axis. 
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In order to extract both the magnitude and phase of the scattered signal from the 

demodulated data, the absolute value of the demodulated data is plotted. A sample of 

the absolute value of the demodulated data plotted is shown in Figure 16.  

 

 

Figure 16. The above figure shows the time series of backscattered data of a 

single hydrophone plotted against the absolute value of the count for one ping. 

This data is sample ping taken from one of the 100 elements of the array. File No: 

193745 Ping no.3. 

 
 
A desired time frame is chosen and the time, at which the absolute value of the count 

is maximum in this time frame, is taken as the time at which the scattered signal is 

         Backscattered signal 
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reflected from the target to the hydrophone. This can be detected by observing the 

peak in that particular range as shown in Figure 16. The magnitude and phase value 

corresponding to the time at which the peak is observed is noted and mapped into an 

array of 100 elements in Matlab. This array data was passed through a Hamming 

window, in order to reduce the effects of spatial side-lobes. The process of passing this 

array through an amplitude shading function will introduce a reduction in the 

magnitude of the array and has to be compensated by adding a value of –15 dB 

(normalized value to an FFT transformed array in Matlab) to the final target strength 

calculation. The amplitude-weighted array is then transformed into the frequency 

domain using an FFT. The transmission loss is calculated from the range (horizontal 

distance from the Farsounder to the target), which is calculated by converting the time 

noted into distance using 1500 m/s as the speed of sound. The parameters of the 

Farsounder sonar such as the receiver sensitivity, array gain, etc. are taken into 

account for calculating the target strength of the array. The target strength is calculated 

using equations (3.16) and (3.17) given below.  

 
The voltage corresponding to the incident acoustic signal is calculated using the 

relation,  
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where Maximum volt  = 10 mV and Maximum Count = 32768. The target strength 

(TS) in dB can now be calculated knowing the voltage (Voltage(returned)), source level 

(SL), receive sensitivity level (RS) of the sonar, transmission loss (TL) calculated for a 
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given range (R), array voltage gain (AVG) of the hydrophone, absorption coefficient 

(α) and amplifier gain (AG).  

 
TS = - RS - SL  + (2*TL) + Voltage(returned) - AVG  + Hamming correction + α - AG     
 

         (3.17) 
 
For the Farsounder sonar, the SL = 204 dB, RS = -178 dB, AVG = 55 dB and AG = –

55 dB.  The transmission Loss (dB) is calculated as 20*log10 (R) and the absorption 

coefficient (dB) α = 2*.02* (R) [1]. Including the absorption coefficient α in the 

calculation of target strength provides a reasonable fit to the measured data under a 

variety of conditions. The value of α is taken as 0.02 from Urick [1]. A correction 

factor of 15 dB reduction in the signal level is included due to (amplitude shading) 

Hamming window. As an example, the TS should be equal to –18.42 dB for a count 

value of 5.0913e+004 at a range of 28 m. 

 

The target strength values thus calculated are mapped into an array. The array was 

mapped with the direction cosines in the x and y-axes and plotted. The results obtained 

are discussed in Section V. 

 
3.8 Direction Cosines 
 
 
 
The direction cosines are used for mapping the target strength values since spatial 

relationships involve the use of transcendental functions, which are sometimes 

unstable. Figure 17 shows a space-time propagation model used to find the direction 
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cosines in the far field. The direction cosines u, v and w are the unit vectors on the  x, 

y and z axes respectively.   

 
zwyvxur ++=  

 

 

Figure 17: showing the space-time propagation model. Their corresponding axes 

define the direction cosines (u, v, w) and r is the emitter source position vector 

relative to the receiver. 

 

where, u = sinθ cos ψ, v  = cosθ cos ψ and w = cosθ.  The sum of the squares of the 

direction cosines is equal to 1 (u 2 + v 2 + w 2   =1) and u, v and w take the values 

between 0 and 1 since πψπθ 20 and 0 ≤≤≤≤ . 
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From Ziomek [19], the FFT bin number is related to the direction cosine in the x-

direction (Ur) by the formula, 
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where, Ur
  is the direction cosine in the x-direction corresponding to the FFT bin 

number r, λ is the wavelength in meters, M is the number of elements in the row of the 

array and dx is the array element spacing. 

Similarly, the value of the direction cosine (Vr) in the y direction is given by the 

formula, 
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where Vr

 is the direction cosine in the y direction corresponding to the FFT bin 

number r, λ is the wavelength in meters, N is the number of elements in the column of 

the array and dy is the array element spacing in Y direction. Since the elements of the 

Farsounder array are equally spaced in the 10 × 10 grid i.e. dx and dy = 0.125, M and 

N = 10. 

 
While calculating the directions cosines, they are often padded with zeros for 

increased resolution because, the desired output obtained will not be symmetric about 

the maximum value. The raw data is processed using this approach and the target 
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strength values were mapped using the direction cosines. The images thus plotted are 

discussed in the Section V. 
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4.0 NUMERICAL CALCULATION OF TARGET STRENGTH 

 
 
 
The prediction of acoustic scattering from finite and infinitely long bodies has been 

pursued for many years. Exact analytical solutions to the acoustic wave equation 

require the scatterer's surface to exactly match the locus of all points for which the 

radial coordinate is a constant. The analytical solutions and their numerical 

implementation procedures for shapes such as spheres and cylinders are available in 

the literature [2]. In the case of complicated shapes such as diver with the scuba gear, 

analytical solutions are difficult to develop to predict the scattering from these shapes 

due to a variety of factors involved such as the shape, geometry, angle of orientation 

and frequency. In these cases separation of variables is not possible.  

 

DiPerna and Stanton [4] introduced a conformal mapping approach to predict the far-

field scattering by infinitely long cylinders of noncircular cross section. The approach 

termed as the Fourier Matching Method (FMM) involves a conformal mapping of 

variables to a new coordinate system in which a constant radial coordinate exactly 

matches the scatterer surface. The method makes use of Newton-Raphson algorithm to 

execute the mapping. The FMM proved to be accurate over a wide range of 

frequencies, cross-section shapes, and penetrable fluids as well as impenetrable 

boundary conditions. Furthermore, the approach is inherently numerically efficient 

due to the nature of its formulation.  
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The FMM was extended to predict the scattering from finite-length bodies [14]. In this 

transformation from the two-dimensional to the three-dimensional coordinate system, 

the FMM had many numerical implementation issues. The problems were mainly due 

to the available workstations, which were unable to represent the actual value of the 

results (due to finite machine precision) as the loop increases. Since the FMM is a 

series solution, each successive modal combination adds a smaller and smaller 

contribution to the solution.  The resulting solution often will fail to converge due to 

the addition of errors accumulated as the algorithm iterates making the solution 

unstable at higher modes. This becomes a significant problem for more eccentric 

shapes and for higher frequencies, or ka (non - dimensional frequency).  

 

Reeder [14] and Stanton argued that one of the fundamental problems is finite 

machine precision. By using efficient software like Fortran, in which the solution can 

be represented in quad precision, the FMM can be used to predict the scattering from 

the complex shapes, such as divers with scuba gear. The theory of the FMM is 

explained briefly below. The problems encountered during the numerical 

implementation of the FMM have been explained in Section 4.2 followed by the 

Fortran implementation of the FMM code in Section 4.3. 

 

4.1 FMM Theory 

 

Solutions to the scattering of infinite length bodies in the two-dimensional coordinate 

system are very similar to solutions to the scattering of finite length bodies in the 
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three-dimensional coordinate system. The new FMM involves defining a new 

orthogonal coordinate system to which the original coordinate system is mapped via a 

conformal mapping function. The scatterer surface in the new coordinate system is 

defined by the locus of all the points for which the radial coordinate is a constant. The 

new orthogonal coordinate system was generated from the existing two-dimensional 

conformal mapping by Diperna and Stanton [4].  

The geometry from Reeder and Stanton (2004) shown in the Figure 18 below 

illustrates a transformation from a two-dimensional to three-dimensional coordinate 

system, in which φ is the azimuthal angular coordinate ranging from 0 to 2π 

(measured from the positive x-axis in the xy-plane), θ is the polar angular coordinate 

ranging from 0 to π (measured from the positive z-axis), and r is the radial coordinate 

ranging from 0 to infinity.  

Figure 18 represents a body of the revolution, formed by rotating the contour of the 

body about the z-axis, in the same way as a prolate spheroidal coordinate system is 

created from an ellipse rotated about the major axis. The new azimuthal angular 

coordinate, v, corresponds to φ in the original coordinate system. The new polar 

coordinate, w, measured from the polar axis, z, ranges from 0 to π, as does the original 

polar angular coordinate system is defined by the vector r. However, in the new 

coordinate system the scatter surface is defined by all points for which the new radial 

coordinate is a constant, i.e. u =0.  

 

From the Figure 18, the functions of the new coordinate system, f (u, w) and g (u, w) 

are defined by,  
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Figure 18. Scattering geometry for an irregular, axisymmetric finite length body. 

The body is symmetric about the z-axis. The azimuthal angular coordinates, φ 

and v range from 0 to 2π in the xy-plane, and the polar coordinates, θ and w, 

range from 0 to π, measured from the z-axis. Broadside incidence corresponds to 

θ  = π/2 and end on incidence corresponds to θ =0 and π. In the new coordinate 

system, g(u,w) is the length along the z-axis and f(u,w) is the projection in the xy-

plane (from Reeder and Stanton (2004) [14]). 

 

 

 cos(v), f (u,w) x(u,w,v) =                                                                                    (4.1) 

(v),  f (u,w) y(u,w,v) sin=                                                                                    (4.2) 

 g (u,w)  z(u,w,v) =                                                                                                  (4.3)  

 

The position vector, r, is defined in the new coordinate system by,  
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k z(u,w,v)   j   y(u,w,v) i x(u,w,v) r(u,w,v) ˆˆˆ ++=                                                   (4.4) 

where  î ,  ĵ and ẑ  are the unit vectors along the coordinate axes. The position vector, 

r, can also be expressed by substituting the Eqs. (4.1 – 4.6) into Eq. (4.4) 

k g (u,w) j(v)   f (u,w)  i(v)   f (u,w) r(u,w,v) ˆ  ˆsinˆcos ++=                                            (4.5)        

 

The local projection of r in each of the coordinate directions is given by the partial 

derivative of r with respect to each of the variables, 

k (u,w)  g j(v)  (u,w)   f i(v)  (u,w)   fr uuuu
ˆˆsinˆcos ++=                                                 (4.6)   

k (u,w)  g j(v)  (u,w)   f i(v)  (u,w)   fr wwww
ˆˆsinˆcos ++=                                               (4.7)  

 ĵcosˆsin (v)  (u,w)  f i(v)  (u,w)  - frv +=                                                                     (4.8) 

 

where the subscript refers to the variable with respect to which the partial derivative is 

taken.  An orthogonal coordinate system requires the following condition to be 

satisfied,  

ru . rv = 0,                                                                                                                  (4.9)  

rw . rv = 0,                                                                                                                (4.10)           

ru . rw = 0.                                                                                                         (4.11)       

 

 

When Equations (4.9) and (4.10) are expanded,  

011sincos  ) (v)(-(v) w)(u,w) f(u,fu =+                                                                 (4.12)      
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011sincos  ) (v)(-(v) w)(u,w) f(u,f w =+                                                                 (4.13) 

0   w)(u,g w)(u,g(v)) sin (v)w)(cos(u,f w)(u,f ww
22

ww =++                                     (4.14) 

 

It is cleat that the above equations are automatically satisfied. The third equation 

(4.14) simplifies to  

0),(  wu(u,w) g g(u,w) (u,w) ff wuwu =+  ,                                                             (4.15)   

 

which will be satisfied if   

(u,w)   g(u,w)  f wu = and                                                                                        (4.16)   

(u,w)  - g(u,w)  f uw =                                                                                              (4.17) 

 

Equations (4.15-4.16) are precisely the Cauchy-Riemann equations for an analytic 

function. If f (u, w) and g (u, w) are chosen to be harmonic, the Cauchy-Riemann 

condition will be satisfied. These are the analytic functions which represent a 

conformal transformation. A shape initially plotted in the (x,y,z) coordinate system 

will be transformed into a shape in the (u,v,w) coordinate system with changes in 

position and size while preserving the angles and proportions. Therefore the FMM 

conformally maps the coordinate variables of the original coordinate system to the 

new coordinate system in which the locus of all the points for which the new radial 

coordinate is a constant exactly coincides with the scatterer surface. The numerical 

implementation of the FMM of the new coordinate system, for the case of soft 

boundary conditions is explained below.  
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4.1.1 Numerical Implementation 

 

The shape of the scatterer is described by the array of points (r,θ) in polar coordinates 

in the xz plane. The radial coordinate r and the azimuthal angular coordinate θ are 

expanded using the Fourier series using the equations,  

[ ]∑
∞

=

++=
1

)sin()cos()(
n

s
n

c
n nrnrar θθθ                                                                     (4.18) 

 

where a is the average radius of the body, c
nr and s

nr  are the usual Fourier series 

coefficients that in this present case correspond to the deviation of the surface from the 

shape of a circle.  Since it was assumed earlier that the surface is periodic and can be 

represented as a Fourier series, the deviation of θ from w will be periodic and can be 

represented as a Fourier series as 

[ ]∑
∞

=

++=
1

)sin()cos()(
l

s
l

c
l lwlwww δδθ                                                                    (4.19)                   

 

where c
lδ  and s

lδ  are the deviation of the surface from a smooth circular shape. 

The conformal mapping relies on the choice of c
lδ  and s

lδ . Using the orthogonality 

relationships of complex exponential functions and multiplying the Eq. (4.19) both 

sides by  ( ) ijwe − 2
1
π and integrating over w from 0 to 2π gives  

 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤
>

=⎟
⎠

⎞
⎜
⎝

⎛
++ −+

∞

=

− ∑∫ 1,
1,0

2
1 )()1()()1(*

1

)(2

0 jc
j

dweReRaee
j

wni
n

wni
n

n

wiijw θθθπ

π
          (4.20) 



 52

where  

[ ]s
n

c
nn irrR +=

2
1                                                                                    (4.21) 

 

The conformal mapping involves determining the values of s
lδ and c

lδ  which are 

found by solving the upper result in the right hand side of the Eq. (4.19).  

 

The above equation is solved by Newton-Raphson method in an iterative numerical 

manner shown in the Appendix of DiPerna and Stanton (1994)  [4] and in many other 

math textbooks.  After solving for the values of c
lδ  and s

lδ , the mapping coefficients 

cn are found, which are then used to compute the functions, g (u, w) and f (u, w), of the 

new coordinate system. After the values of g (u, w) and f (u, w) are determined, the 

conformal mapping is complete, and the solution to the Helmholtz equation in the new 

coordinate system can be determined.  Predictions are made at first with a small 

number of terms, and then the number is increased for subsequent predictions until the 

scatterer is accurately mapped to the new coordinate system.  In the case of a smooth 

prolate spheroid, the conformal mapping may be avoided by defining f 

as )sin(waf = and g as )cos(wbg = , where a and b are the semi-minor and the semi-

major axes of the prolate spheroid respectively. 

 

The scattered field coefficients are found by satisfying the boundary conditions using 

the known coefficients anm , of the incident plane wave field traveling from θo 

direction relative to the z-axis.  
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For the case of soft boundary conditions, the series coefficients b nm, for the scattered 

field is given by,  

nm
m
n

m
nnm aRQb 1)( −−=                                                                                              (4.22) 

 

where  
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)1(
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nm
n

nm P
mn
mnnia
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+=                                                       (4.25) 

 

where )(krjn  is the spherical Bessel function of the first kind of order n, and )1(
nh  is 

the spherical Hankel function of the first kind of  order n, mε  is the Neumann factor 

and the Γ  is the gamma function and ( ))cos( 0θ
m

nP  is the associated Legendre function 

of degree n and order m.  

 

The Eq. (4.23) describe the scattering coefficients b nm, for the soft boundary 

conditions. The FMM code currently available in Matlab is translated to Fortran for 

the case of soft boundary condition and hence in the present study we are interested in 

the soft boundary condition.  The solutions for the rigid and the fluid boundary 
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conditions can be obtained, by solving the Equations (71 -80) in the paper by Reeder 

and Stanton [14].  

 

The scattering amplitude is computed from the scattered field coefficients b nm,. The 

scattering amplitude is a measure of the efficiency with which an object scatters sound 

and is a function of the object's size, shape, orientation, material properties, and the 

wavelength of the incident wave. It is given by the equation,  

imvm
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n
nm

mn
s e

wur
wug

Pibf ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −−

∞

−∞=

∞

−∞=
∑∑ ),(

),(

0

01                                                       (4.26) 

 

As explained in Section II, the far-field scattered energy evaluated in the backscatter 

direction is expressed in terms of the target strength (TS),  

bsTS σlog10=                             (4.27) 

 

where bsσ  is the differential backscattering cross section equal to the square of the 

scattering amplitude evaluated in the backscattering direction. 

 

Representing the target strength on a dimensionless scale becomes convenient 

sometimes, in order to compare the scattering from objects of different sizes but 

similar proportions. The ‘‘reduced’’ target strength (RTS) normalizes the target 

strength by the square of outer dimension of the body. In the case of a sphere, the 

outer dimension is normalized by πa2 instead of L2. 

2
22
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The new FMM model described above is numerically efficient and valid for a wide 

range of frequencies and shapes. In addition to the case of soft boundary conditions as 

explained above, the other two boundary conditions, namely the rigid and the fluid, 

were also predicted using the FMM. But FMM had some issues with the numerical 

implementation. These are described below.  

 

4.2 Problems in Numerical Implementation 

 

The sphere and the prolate spheroid were considered as the scattering shapes for this 

research. The accuracy of the FMM results for these two shapes has been previously 

demonstrated by Reeder and Stanton [14] in comparison to the exact solution by 

Anderson (1950). The results by Reeder and Stanton were concentrated only on 

accuracy and not on the issue of precision. Precision is the number of significant digits 

to which a value has been reliably measured and corresponds to the number of decimal 

places to which a computer is able to represent a value. Each operating system has its 

own values of precision depending on its storage capacity of the memory. Although 

the complexity of computer calculations has been studied and explained in detail [11], 

basic computational problems associated with precision and machine epsilon (eps) that 

will amount to the improvement of FMM are explained here.   

 

For a given amount of storage in a system, not all numbers can be represented within 

the numerical capacity of the system. For example, a 32 bit word, the exponent must 

fit in the range –128 < E < 127 because all the 8 bits of storage space for the exponent 



 56

would be filled with the binary representation of E, which is 01111111 for E = 127 

(Overton, 2001). A number larger than 127 would require more than 32 bits of storage 

space, which is not allowed by 32-bit computer architecture with only 8 bits allotted 

for the exponent. Many numbers must be rounded off before they can be fit into 

floating point form because the binary expansion must contain an exponential power 

of 2 within a prescribed range. Even the number 1/10 does not have a finite binary 

representation and will introduce an error into the computing process (Overton, 2001).   

 

Another important criterion is the machine epsilon (eps). Machine eps is the smallest 

number that can be discerned by a computer. The eps is different for different values 

of machine precision. Therefore, changing the machine precision changes the number 

of binary digits in the storage space thereby, determining the eps. But machine 

precision cannot be changed on a given machine, as it is hardware dependent. Higher 

values of precision allow a larger range of numbers to be stored within a computer 

system and vice versa. One of the basic problems in the numerical implementation of 

FMM is that of precision. Precision represents a challenge for certain calculations like 

FMM where the computations require a great degree of precision in order to predict 

the results that are accurate enough to be useful.  

 

The FMM generates a transition matrix that relates the incident field coefficients to the 

scattered field coefficients. For a spherical scatterer, the transition matrix is diagonal 

and each nonzero term on the main diagonal is an eigenvalue for each mode 

computed. If the scatterer shape deviates from spherical, the matrix will contain off-
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diagonal terms. The additional higher modal terms required to represent the scattering 

become extremely small, sometimes falling below the value that can be accurately 

represented numerically. The computer cannot resolve the smaller terms at higher 

modes. This results in a singular matrix in which the true values of its elements are 

below the precision of the machine. Thus, machine round-off error is introduced into 

the solution and quickly dominates the results as it propagates through the solution via 

repetitive matrix manipulation. Thus the main reason for numerical instability can be 

attributed to the finite machine precision. 

 

The IEEE has standardized the computer representation for binary floating-point 

numbers in IEEE 754 [11]. This standard is followed by almost all modern 

machines.The precision of IEEE floating point represention is given below.   

 

 Format  Precision Machine epsilon 

Single p = 24   ε = 2 –23 ≈ 1.2 × 10 –7

Double  p = 53 ε = 2 –52 ≈ 2.2 × 10 –16 

Quad p = 113 ε = 2 –113 ≈ 9.6 × 10 –35 

 

Table 4.1. Precision of IEEE floating-point representations. 

 

Table 4.1 shows that although the precision seems high in binary form, the decimal 

equivalent of these numbers of binary digits of precision is lower. Reeder and Stanton 

[14] hypothesized that extended precision would provide a more stable and accurate 

result. Increasing the number of decimal digits used in computation can make a much 

greater impact than increasing the number of binary digits of the same value (Overton, 
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2001). The extended precision capability in the Fortran programming language 

promised a method to test this hypothesis.  Although, Matlab has better sophisticated 

built-in functions, Fortran provides a rigid programming support for representation of 

the results in double or quad precision. Fortran has been used extensively by scientists 

and engineers, and has dominated the field of numerical computation for decades. 

Fortran coding was important to this study to provide more stable and accurate results 

to improve the FMM method.  Some of the advantages of using Fortran in the 

execution of numerical application are  

 

1. Fortran results can be represented by extended precision (Quad precision). This 

is the major advantage over all the programming languages available. 

2. Fortran is a simple language and has been in use for sometime. It is one of the 

first programming languages for implementing numerical models. 

3. There are various Fortran libraries and subroutines available freely to the user . 

These libraries and subroutines can be easily added to the compiler options 

using Fortran. 

4. It is the first programming language and a great deal of numerical modeling is 

done in Fortran due to its structure. It gives faster computational results 

compared with Matlab or C.  

5. Case insensitivity eliminates bugs due to 'miscased' identifiers. 

6. The lack of reserved words in the language gives the programmer complete 

freedom to choose identifiers.           

7. The one statement per line principle makes programs more robust.  
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8. Added blanks (space characters) are insignificant (except in character 

constants) this also contributes to the robustness of FORTRAN programs. 

9. Linking with the mathematical library doesn't require any compiler option (in 

C you to have to use "-lm"). 

 

4.3 Conversion from Matlab to Fortran - Numerical Implementation 

 

The conversion of the code from Matlab to Fortran was a challenging problem, as a 

number of functions built-in Matlab have to be called in as subroutine procedures by 

Fortran. Extensive groups of users have written libraries of useful standard Fortran 

programs, which can be borrowed to take advantage of the expertise and experience of 

the corresponding authors. The Legendre functions, Spherical Bessel functions and the 

Gamma function were used as subroutines to compute the scattering coefficients in 

Fortran. The SVD (singular value decomposition) routine was taken from the 

LAPACK mathematical routines [8].  The approach taken and the problems 

encountered during the translation from Matlab to Fortran are explained below.  

 

An SVD algorithm was used for the implementation of the FMM formulation.  SVD is 

a powerful technique for decomposing any M × N matrix. Any M × N matrix A whose 

number of rows M is greater than or equal to its number of columns N, can be written 

as the product of an M × N column-orthogonal matrix, U, an N × N diagonal matrix W 

with positive or zero elements (the singular values), and the transpose of an N × N 

orthogonal matrix V. For an ill-conditioned matrix, in which some elements are below 

the machine precision, the SVD algorithm sets numerically indiscernible elements to 
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zero. Eliminating the values are justified because they do not contribute significantly 

to the solution and may primarily contribute to the errors as the modal combinations 

increase. 

 

 The threshold of a SVD routine determines the values to be rounded off to zero. The 

scattering solutions depend on the setting of the SVD threshold. If the threshold is set 

too low, many values those are supposed to be zero but are non-zero because of the 

round-off errors may be left in the solution as erroneous contributions to the scattering 

solution. The threshold for SVD should be set at-or-below the value of the eps 

associated with the increased precision. Singular decomposition is a very valuable and 

powerful technique. Incorrect implementation could result in the incorrect prediction 

or representation of the results. After computing the singular values, the backscattering 

coefficients are obtained using numerical integration and using suitable coefficients to 

remove the discontinuities in the integration. The backscattering values are stored in a 

file along with the index values necessary for plotting the output in Matlab.  

 

The machines used for this research were Dell Dimension 4550 series with Intel 

Pentium processors. These machines are used to perform computational work with 32 

bits of storage space for each floating-point number. Considering the need for running 

Fortran in Quad precision, the Linux CLUSTER environment was accessed via this 

machine. The CLUSTER is a group of multiprocessors built mainly for faster 

computational work.  The CLUSTER was connected to the Dell machine through 

faster local area networks. A single processor of the CLUSTER was utilized for this 
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project. The computer code was written in IFORT (Intel Fortran) version 7.1, 

produced by the Intel group, which does numerical computations in Quad precision. 

The Intel Fortran compiler has a variety of options that enable to use the compiler 

features for higher performance of the application. The Linux operating system is very 

supportive for technical computing and proved to be a reliable research tool.  

 

Many algorithms and techniques were implemented to improve the performance of the 

changed FMM in Fortran. The first and foremost priority was the initial translation 

from Matlab to Fortran to predict the scattering results in Quad precision. One of the 

problems encountered during the conversion was that of the array size allocation in 

Fortran. Matlab automatically increases or decreases the size of the array depending 

on the nature of the program, but Fortran cannot do so. This particular problem was 

solved by making use of an external function; i.e. calling the external program by 

another main program so that the variable input can be given from the calling main 

program. This way, the variables are assigned and proper array size is allocated before 

the routines start.  

 

Figure 19 below shows the results obtained for soft spheroid with smooth boundary 

conditions, aspect ratio (b/a) of 1:1 and ka ranging from 0.01 to 10, where a is the 

semi minor axis, b is the semi major axis and the aspect ratio b/a. The results obtained 

using the Fortran and Matlab versions of FMM were identical for this case. This 

validates the Fortran implementation of the FMM program.  



 62

 

 

Figure 19. The output (Target strength (TS), Reduced target strength (TS)) 

graphs from Matlab and Fortran versions of FMM for the case of a soft spheroid 

with smooth boundary condition with aspect ratio (b/a) of 1:1 where a is the semi 

minor axis and b is the semi major axis with an incident angle of 0 degrees and 

the modes m and n equal to zero. The two results are identical for the case 

considered.   
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5.0 EXPERIMENTAL RESULTS 

 
 
The target strength modeling of a diver is a complicated function of size, shape, 

frequency, material properties and angle of orientation, for which a simple spherical 

scattering model is insufficient at most frequencies. Field measurements of target 

strength of human divers are not readily available in the literature. A field study to 

measure the target strength of the diver was conducted in Buzzards Bay, and the 

backscattering data was recorded using the Farsounder sonar. Using the FFT 

beamforming approach as discussed in Section III, the collected data was processed to 

obtain the estimate of the target strength of the diver. This section discusses the results 

of these calculations for a representative subset of the data.  

 

5.1 Diver Target Strength 
 

Typical outputs of the beamformed data are plotted in Figures 20 and 21.  Figure 20 

shows the backscattered data from the sphere used for calibration. The sphere is made 

of plastic and is an air filled perfect scatterer. This sphere was positioned at 24 m from 

the sonar and at 15 m below the sea surface. The radius of the calibration sphere was 

equal to 0.14 m. The color scale in the Figures 20 – 22, represents the target strength 

value expressed in dB. It can be seen from Figure 20 that the target strength of the 

sphere is  -23.2 dB (average) at the range of 25.3 m. This measured value of the target 

strength compares well with the theoretical target strength value calculated using Eq. 

(5.1) [18] as shown below,  
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dBaTS in     
4

log10    
2

=                                                                                              (5.1) 

 
where a is the radius of the sphere in m.  

 

 
 
 
Figure 20. Beamformed image of the sphere of diameter 28 cm showing the 

beamformer output of the backscattering coefficients of the sphere used for 

calibration. Target strength of the sphere was found to be equal to –23.2 dB at a 

range of 25.3 m. The x-axis shows the cross range position of the sphere and y-

axis shows the vertical distance from the Farsounder sonar.   

Target [sphere] 
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Using the radius of the sphere as 0.14 m, Eq. (5.1) will give the target strength value 

as -23 dB.  The close agreement between the target strength calculation based on the 

FFT beamforming and the Urick formula (Eq. 5.1) validates the implementation of the 

FFT beamforming algorithm applied in this study. Figure 20 also provides the cross 

range and the depth of the target in terms of its distance from the sonar.  

 

Having validated the beamforming algorithm by comparing the target strength of the 

sphere with theoretical calculations, the backscattered data from the diver was 

processed using the same approach. Figure 21 shows the beamformer output 

representing the target strength of the diver with the tanks. The diver was traversing 

the water column at a range of 24 m. It can be seen from Figure 21 that the target 

strength of the diver calculated using the FFT planar array beamforming technique 

was equal to –21.4 dB at a range of 26 m. This value of the target strength compares 

well with the theoretical target strength value computed for a finite cylinder of radius 

0.25 m and length 1 m at an angle of incidence of around 45 degrees using the Eq. 

(5.2) [18] below,  
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The target strength calculated using the above formula is plotted in Figure 6  

(Section II). Figure 21 below shows the beam formed image of the diver with depth in  

the y-axis and cross range from the sonar in the X axis. The depth and the cross range 

information were calculated using the direction cosines and mapped to the current  

figure. 
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Figure 21. Beamformed image of the diver with tanks and bubbles. The color 

scale represents the target strength in dB. The target strength of the diver was 

found to be equal to –21.4 dB at a range of 26 m. The x-axis shows the cross 

range position of the diver in m and y-axis shows the vertical distance from the 

Farsounder. The figure also shows the bubble cloud above the diver equal to the 

target strength value of –21 dB. 
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As mentioned earlier, the finite cylinder model is taken as the suitable approximation 

to the human diver due to its elongated shape and the length of the finite cylinder 

model is taken as 1 m since the maximum scattering from the human body will be 

predominantly by the lungs. The close similarity between the target strength 

calculation based on the FFT beamforming technique and the theoretical value 

validates the FFT beamforming algorithm used for this study. Thus the target strength 

modeling of the diver proved to be accurate at an incident angle of ~ 45 degrees.  

 

Figure 22 shows the output of the beamformer as a function of range. This, in effect 

amounts to probing the data around the visually observed peak, for which the 

beamformer output is shown in the Figure 22. Indirectly, this corresponds to 

processing the data at different ranges (25.5 m to 27 m). As can be seen from Figure 

21 the target is clearly seen at the range 26.1 m and it fades out at other ranges. The 

target strength corresponding to this range is equal to –21.4 dB.  

 
 
The target strength values calculated using FFT beamforming technique as discussed 

above was also compared with the numerical calculations. These numerical 

calculations were performed using the FMM technique as discussed in Section IV. 

Details of the results from numerical calculation are discussed in Section 5.2 below.  

 
 
 
 

 



 68

 
 
Figure 22. Beam Formed image of the diver as a function of range.  As the range 

changes, the target becomes visible and diminishes when the range goes out of 

desired value. 
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5.2 Modeling Results Using the Fortran Version of FMM  

 

The FMM code written in Fortran for this study was validated by comparing with the 

results of Reeder [14]. Given the importance of the numerical implementation of the 

code in Fortran, a performance envelope was generated and compared with the one 

generated by the Matlab program. The value of ka is noted for the converged solution. 

A converged solution is the one in which the computation of additional modes does 

not significantly change the result for a given value of ka. This was done by visual 

inspection of the output plots. The results obtained using the FMM code in Fortran 

was found more accurate for a particular case considered by Reeder [14]. The 

performance envelope is plotted for broadside backscatter in the case of a smooth 

prolate spheroid with soft boundary conditions as a function of ka and aspect ratio 

(b/a). The various loop combinations of the two basic modes ‘m’ (associated with ϕ, 

the azimuthal angular coordinate range) and ‘n’ (associated with θ, the polar angular 

coordinate range) result in the scattering coefficients.  For a single aspect ratio, results 

were plotted in Fortran for different modal combinations (‘m’ goes from 0 to 15 and 

‘n’ is an inner loop which goes from m to 25).  

 

The figure 23 below represents the performance envelope plotted for the case of 

prolate spheroid with aspect ranging from ratios 1:1 (sphere) to 13:1, and ka ranging 

from 0 to 10. As the aspect ratio is increased beyond 3:1, the value of ka at which the 

convergence is achieved falls of rapidly. For aspect ratio less than 5:1, the converged 

solution in the Fortran implementation is better compared with the results obtained 

from Matlab. 
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Figure 23. Performance envelope for broadside backscatter for a smooth prolate 

spheroid with soft boundary conditions as a function of ka and aspect ratio in 

Fortran. A converged solution is defined in this paper as one in which the 

computation of additional modes changed the scattering amplitude by less than 

0.1% for a given value of ka. As the aspect ratio or value of ka is increased, 

converged solutions are more difficult to obtain. 

 

The converged solution obtained using the Matlab code is higher than that of the 

Fortran code, for the aspect ratios of 5:1 or higher. This can be attributed to the 

advanced algorithms and higher optimized routines that Matlab uses and performs for 

the computation of matrix inversion. The current code in Fortran can be improved 

with the use of these higher optimized routines available for the conditioning of the 
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matrices. Another important improvement in the code can be made in the threshold set 

by the SVD routine. For any ill- conditioned matrix in which some elements are below 

machine precision, the SVD algorithm sets those numerically indiscernible numbers to 

zero. Singular values whose ratio to the largest singular value is less than N times the 

machine precision are set to zero [13]. This threshold value is equivalent to the rank of 

the matrix, which is an estimate of the number of linearly independent rows or 

columns of a matrix. Therefore, the threshold used for the SVD must be set so as to 

improve the convergence of the code. The implementation of these techniques in the 

current Fortran code and various other smoothing techniques could delay the onset of 

the ill-conditioned matrices, increasing the convergence.  

 

The new FMM takes a greater amount of time for computing the scattering 

coefficients in Quad precision. Figure 24 provides a comparison between the 

computational time taken by FMM in Matlab and improved version of FMM in 

Fortran. As mentioned earlier, increased precision takes more time and storage in the 

system to compute the results. The computational time shown in Figure 24 

corresponds to a single aspect ratio of 10:1 for the case of prolate spheroid at an 

incidence angle of 90 degrees. The model was run for the range 0.01 < ka < 10 with a 

ka increment of 0.01which provides almost 50 times the number of data points used in 

the original FMM. The computational time for the modal combinations of 1/1, 5/5, 

10/10 and 15/15 were only calculated, which provided a suitable approximation, if the 

model was to be run for all the modal combinations. But this plot clearly shows that 

the extended precision in Fortran version of FMM requires a much greater amount of 
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computational time than the double precision format in Matlab. Figure 24 shows that 

extended precision increases the computational time and storage for the model.  

 

Figure 24. FMM computational expense in minutes. The FMM version in Matlab 

was run solely on double precision, which corresponds to about 16 decimal digits. 

The FMM version in Fortran was run on Quad precision, which corresponds to 

about 32 decimal digits. The comparison shows that extended precision requires 

a greater amount of computational time to predict the scattering results. This 

figure was plotted for one aspect ratio (10:1) for a ka of 0.01to10. 

To determine the incident angles to the diver, the Farsounder pings were processed 

using techniques described above (Section III) and the target strength was plotted in 

Matlab. Although all the pings could not be exactly interpreted, the depth and the 

range of the target were noted down from the pings where the target was identified.  
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The incident angle from the Farsounder sonar was calculated using the depth and the 

range information. Using the trigonometric relation, the angle was found as the inverse 

sin of the depth over the range. The incident angle of the sonar was calculated and 

plotted over the numerical model of the cylinder of length 1 m and radius 0.125 m 

(plotted initially in Section 2).  The results of plot shows that the angle of incidence 

varies between 25 < θ < 60 degrees. The figure strongly suggests that the diver was 

predominantly at these angles of incidence.  

 

Figure 25 shows the identification of the target plotted over the numerical 

modeling of the cylinder of length 1 m and radius 0.125 m.  The plot shows that 

the target was at an angle of attack from 25 to 60 degrees with respect to the 

normal.  
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6.0 CONCLUSIONS AND RECOMMENDATIONS 
 
 
 
Absence of published values of target strength of divers motivated the present study. 

We tried to address this problem experimentally by measuring the target strength in 

the field and modifying an existing FMM based code to handle complex shapes (such 

as diver, tanks). The target strength calculated using the numerical modeling using the 

formulas from Urick, Stanton and Gaunaurd was equal to the value of approximately 

equal –20.4 dB at an angle of incidence of around 45 degree with respect to the axis of 

the cylinder. The numerical modeling and the results from the experiment also agree 

with each other at an angle of incidence from 25 < θ < 60 degrees at a frequency of 60 

kHz.  

 

The major accomplishments of this study can be summarized as follows: 

 

1. Processing of the data from the planar array using the plane wave 

beamforming techniques provided a target strength value of –21.4 dB at a 

range of 26 m. This study contributes an important and useful measurement of 

the target strength of a diver.  

 

2. An important numerical modification of an existing FMM code was also 

carried out in Fortran. The new program developed based on FMM proved to 

be more precise in predicting the scattering coefficients for lower aspect ratios. 



 75

The Fortran compiled code in the Linux environment was faster as compared 

to the Matlab code in the Windows operating system for lesser aspect ratios. 

The work represents a significant advancement by providing a numerically 

efficient code translation from Matlab to Fortran by representing the scattering 

coefficients in Quad precision. There is a greater potential for the current code 

to be used to predict the scattering from complex shapes such as elastic shells 

and solids with the advanced algorithms and more optimized routines similar 

to those used in Maltab. 

 

3. Analytical predictions as well as numerical results from the FMM simulation 

of the target strength of the diver were consistent with the measured values 

given the difficulty in modeling the shape. Also, the orientation of the diver 

was not measured to any great degree and bubbles complicated the acoustic 

signature of the diver. 

 

Target strength of divers was measured for angles of incidence around 45 degrees. 

Future measurements of the diver target strength could be improved by the addition of 

a 3-axis accelerometer to the diver during the experimental trial. The diving test was 

conducted with the diver using 3 tanks. Hence the results provided above should be 

the total scattering by all these (diver and the equipment) put together.  Recent 

advancements in diving techniques such as the use of rebreather system, which does 

not require the use of tanks, can be used to test the target strength of the diver. The 
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results of such an experiment with the techniques described will provide a good 

comparison between the target strengths of the diver with and without the tanks.  

 

The increased precision in the new version of the FMM afforded a more accurate 

numerical solution. Initial limitations on the improved FMM included computational 

time, availability of required software to predict the results in Quad precision in 

Fortran and error corrections in Fortran. Although the scattering solution in the Fortran 

FMM model could not be computed for all the modal combinations, the basic 

expectation of the improvements and implementations in the performance of the 

model held true.  

 

The FMM requires many improvements for making it available for practical use. The 

FMM was currently researched for its performance on the scattering from prolate 

spheroids and sphere. But the FMM is intended to predict the scattering from complex 

shapes and irregular shapes. Taking into consideration for the time taken by the FMM 

to predict the scattering, it may be very difficult to incorporate the current model into a 

sonar system. But faster and more robust systems can make FMM a powerful tool in 

current world's technology. The threshold for the SVD algorithm should be set so that 

there is minimal error contributing the solution of the FMM. Currently the eps is set as 

the threshold for FMM, but there is more scope for research in studying the effects of 

changing this current threshold. The performance envelope of the current FMM shows 

that the convergence results for the aspect ratio 3:1 is greater for the Fortran version 

but there is a decrease in its performance as the aspect ratio is increased beyond 5:1. 
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This can be attributed to the advanced algorithms and higher optimized routines that 

Matlab uses and performs for the computation of matrix inversion. The current code in 

Fortran can be improved with the use of these higher optimized routines available for 

the conditioning of the matrices. 
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APPENDIX – A 

Programs 

Matlab Code For Finding the Scattering From Finite cylinder 

  
% Target Strength of a Cylinder...  
% To find the Target strength of a Cylinder... The analysis is done by 
% Taking- the model of a cylinder of length L and radius a... 
% Reference used ... Robert.J.Urick -  
% // Priniciples of Underwater Sound // Page no : 303 & 316   
% Done by Sairajan Sarangapani ...@ <ssairajan@mail.uri.edu> date started 
% on 22 september 2004 .  
%  
% Target strength of the cylinder is = 10 log (t) 
% t = a.L.^2 / 2 *lambda *(sin Beta/Beta).^2* cos(teta).^2 ; 
% Beta = k. L. sin(teta); 
% Wavenumber   k = 2*pi/wavelength ;  
 
%  L = Length of the Cylinder  
%  a = radius of the Cylinder  
%  Direction of incidence - At angle teta with normal  
%  Conditions : ka >>> 1 ;  
%               r  > L.^2/Lamda ; where r is the range ; 
 
  
clear all  
close all  
clc 
a = 0.125 ; 
L = 1;  
C = 1500 ; 
F = 60000 ; 
Lambda = C/F; 
k = 2*pi/Lambda ; 
teta = (0:89) *(pi/180); % Converting into radians. 
Beta = k *L .*sin(teta)/pi; 
M1  = (a *L.^2)/(2*Lambda); 
M2 = sinc(Beta); 
M3 = cos(teta).^2; 
Tar_str =10 *log10(abs( M1 .*M2 .*M3)); 
plot(teta*180/pi,Tar_str,'r');grid on ; 
title('Target strength of the cylinder with radius = 0.125 m and length = 1m') 
xlabel('Incident angle in degrees') 
ylabel('Target strength of the cylinder in db') 
k * a  
hold on  
clear  
clc 
a = 0.125 ; 
L = 1;  
C = 1500 ; 
F = 60000 ; 
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Lambda = C/F; 
k = 2*pi/Lambda ; 
teta = (0:89) *(pi/180); 
Beta = k *L .*sin(teta)/pi; 
M1  = (a *L.^2)/(2*Lambda); 
M2 = sinc(Beta); 
M3 = cos(teta); 
angle = teta*180/pi; 
angle = angle(1):9:angle(end); 
Tar_str =10 *log10(abs( M1.*M2.*M3)); 
tar1 = Tar_str(1):-1:Tar_str(20); 
plot(teta*180/pi,Tar_str,'b');grid on ; 
title('Target strength of the cylinder with radius = 0.125 m and length = 1 m') 
xlabel('Angle of incidence (deg)') 
ylabel('Target Strength (dB re 1m)') 
h = legend('Urick/Kerr ','Stanton/Gaunaurd ',3);  
k* a 
 
 
2. Calculating the target strength of the diver from the raw data of Farsounder 
sonar. 
 
% Latest revision - 28 decemeber 2005  
% To find the Target Strength of a diver...  
% The analysis is done by demodulating the raw data, taking the phase  
% and magnitude information from the data. Converting into an FFT Window 
% and calculating the Target strength with relevant Sonar parameters. 
% // Priniciples of Underwater Sound // Page no : 303 & 316   
% Done by Sairajan Sarangapani ...@ <ssairajan@mail.uri.edu> date started 
% on 22 september 2004 .  
  
%  Direction of incidence - At angle teta with normal  
%  Conditions : ka >>> 1 ;  
%               r  > L.^2/Lamda ; where r is the range ; 
  
clear all; 
close all; 
clc  
  
data = readURI                                      %data from 2005-06-01_193745.rsd2, ping 5 hydrophone 2 
xdata = data.rawData; 
  
x = zeros(10,10); 
chanmap = reshape(1:100,10,10)';       %Array for the count values to be stored  
c = 1500 ;                              % Sound speed in m/s   
fc = 60000 ;                                        % Carrier Frequency of Farsounder sonar 
fs = data.sampleRate ;                 % Sampling Frequency     
Lambda = c/fc ;                         % Wavelength in m 
dx = data.elementSpacing ;              % Spacing between the hydrophones 
Nfft = 275 ;                                                                                    % Zero Padding value 
M = 10 ;                                                                                  % Number of elements in x and y directions 
U = []; 
V = []; 
d_count = [];                            
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count = [] ; 
r = (Nfft -1 )/2 ;                    % Number of FFT bins 
R = 0; 
         
    for i = 1: 100;                                             % Each value in a hydrophone is a time series.     
    [x1,x2]=demod(xdata(i,:),fc,fs,'qam'); 
    m = (x1 + j*x2);                                                                       % Taking the real and Imaginary values 
    m2 = m(8000:12000);                                                              % Select a arbitary period  
    abs_m2 = abs(m2) ;                                                                  % Absolute value in the period  
    count =[count max(abs_m2)] ;                                                  % making an array 
    if (count(i) == 0)                                                  %Loop for finding the time index and complex value   
    R1 = 0 ;               
    x(chanmap(i)) = R1 ;  
    else 
    R1 = find(abs_m2 == count(i)) + 7999 ;             % find Index where the absolute value is Maximum 
    x(chanmap(i)) = m(R1);                                      % Map the Magnitude and phase value to an array   
    end 
    d_count = [d_count R1];                 
    end 
  
R =(d_count.* c)/ (data.sampleRate* 2);                                % Distance(Range) in m 
                                                                                % The mean R from 96 hydrophones. 
mean_R1 = (sum(R) / 96)-3 ;                           % Mean range subtracted by average error due to distance 
wind = hamming(10);                                      %Using Hamming window of order 10  
wind2 = wind*wind';                                       % Create a 10 * 10 window of order 10 
Fx = x.*wind2;                                                 %Multiplying with the data (complex) 
F = fft2(Fx,Nfft,Nfft)'; 
F2 = fftshift(F);                                                % Shiffting zero to center 
[Ts,count_v]=Ts_find(F2,mean_R1) ;              % Finding the Ts using a function    
  
%%%%%%%% Mapping the target strength values caluculated using the  
%%%%%%%% Direction cosines. 
  
for i = -r:r  ;                    
    U1 = ((i *  Lambda) / ((Nfft) *dx));                                                %(fft bin_number*lambda / M*dx)             
    U = [U U1];                                                                                      % Direction cosine in x  
    V1 = ((i *  Lambda) / ((Nfft) *dx));                                                 % Direction cosine in y  
    V = [V V1];                                                                                      % Ziomek (5.1 - 106)   
end 
  
u2 = U(41:235); 
v2 = V(138:275); 
  
u3 = U(41):((U(235)-U(41))/(275-1)):U(235); 
v3 = V(138):((V(275) - V(138))/(275-1)):V(275); 
  
max_Ts = max(max(Ts)); 
  
figure  
imagesc(u3*mean_R1,v3*mean_R1,Ts);  
title(sprintf('Target strength = %3g dB, Range = %3g in m',max_Ts,mean_R1),... 
  'fontsize',12,'fontweight','bold') 
xlabel('Cross range from the sonar (m)') 
ylabel('Depth from the sonar (m)') 
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caxis([-31  -18])  
colorbar 
axis square 
 
2.1 Function to calculate the Target strength 
 
function [Ts,count_v]=Ts_find(F2,mean_R)  
  
  
SL = 204        ;               % Source level of Farsounder 
RS = -178       ;                                                                         % Receiver sensitivity of the hydrophones  
H = 96          ;                                                                                                    % Number of hydrophones  
AVG = 20* log10(H)     ;                                                             % Array voltage gain of 96 hydrophones 
PL = 20 * log10(mean_R);                                                                                   % Propogation loss in dB  
Ham_correction = 13  ;                                                                                  % Hamming correction in dB 
AG = 55         ;                                                                                                        % Amplifier Gain in dB 
MaxCount = 32768; 
Maxvolt  = 10   ;                                                                                                                 %32768 = 10 v       
  
count_v = zeros(275,275); 
count_v1 = reshape(1:75625,275,275)'; 
Ts = zeros(275,275); 
Ts1 =  reshape(1:75625,275,275)';                                                                     %  Mapping the TS values 
   
for i = 1: 75625 ;                                                                                      % Number of values in the array 
  count = abs(F2(i)); 
  Volt = (count*Maxvolt)/(MaxCount);                                                             %volt for particular count   
  Count_V = 20* log10(Volt);        
  Ts2 = - RS - SL  + (2*PL) + Count_V  - AVG  + Ham_correction + 2*.02*mean_R - AG ; 
  Ts(Ts1(i)) = Ts2 ;                                                                                     % The target strength mapping 
  count_v(count_v1(i))= Count_V; 
end 
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APPENDIX - B 
Data sheets 
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